4th Int. Conf. on Rehabilitation & Maintenance in CE 11-13 Jul 2018 Surakarta (Solo), Indonesia

Smart Rehabilitation and Maintenance in Civil Engineering for Sustainable Construction

Leveraging Al in Asset Maintenance

Chan Weng Tat National University of Singapore

WT Chan

- Joint appointments as Assoc. Prof.
 - Civil & Environmental Engineering
 - Industrial Systems Engineering & Management
- Program Manager
 - M.Sc. Systems Design & Management
- founding Co-Director
 - NUS-JTC Industrial Infrastructure Innovation Center
- Research areas
 - Infrastructure systems management, systems engineering, artificial intelligence.

- 1. Background
- 2. Asset Maintenance Process
- 3. Fault Diagnosis & Prognosis
- 4. AI use cases

5. Conclusion.

1. Background

Asset Performance

from Developing pavement performance models (TRB 2017)

• Performance curve

- predicts how performance degrades with time and/or use
- Asset can show early signs of failure
- Failure threshold
 - A lower cutoff on performance which signals failure is imminent
 - rehabilitation must be done soon
- Rehabilitation
 - Restore asset to original performance
 - Value of asset is restored.

System context of asset performance

from Developing pavement performance models (Kargah-Ostadi: TRB 2017)

• Multi-causation

- Degradation of performance is due to many factors
- No two assets will be identical on all these factors

• Causation is not one-way

- A factor may influence the effect of another factor on the response
- +ve / -ve feedback loops among the factors and the response.

AM tasks & decisions

- What asset to maintain
- How to detect faults which lead to asset failure
- How to assess health condition and diagnose faults
- What limits and thresholds should be set for timely action
- What is the prognosis
- What is the appropriate maintenance action
- How to balance value preservation *vs*. maintenance cost over the asset life-cycle
- Which AM strategy to create cost effective programs.

Shift of emphasis

- Increasing complexity
 - Both asset functions and technical systems
- More interdependency between systems
- Internet of Things
 - Better sensors, communications and computing power create opportunities.

• Shift

- From single asset to system to 'system-of-systems'
- From data to information processing
- From functionality to service quality.

Asset Maintenance Management

from Moubray(1991)

- Strategy for the continuous improvement of the
 - availability, safety, reliability and longevity of physical assets in systems, facilities, equipment or processes

• Goal & process alignment

- Technical + business aspects
- Balance asset value preservation *vs*. maintenance cost

• Objective

• Assets shall be *available* when required and can *fulfil their function safely* and *reliably* in conformance with specified *requirements*.

2. Asset Maintenance Process

Asset Maintenance framework

from Katipamula (2005)

Maintenance strategies

• Corrective

- Action after event (critical warning, failure)
- Possible actions:
 - Defer, partial of complete repair, Rehabilitate, Replace

• Preventive

- Time-based or X number of uses
- Pre-empt failure
- Costly
- Predictive
 - Condition based
 - Needs monitoring to determine state of 'health'.

Architecture of AM system

• Multi-layered architecture

- Each layer processes data/ information in its own way to fulfill its role
- Each layer receives information from the previous one
- Level of information abstraction
 - From sensor data in the form of analog or digital signals, to sub-symbolic numeric data, to knowledge concepts at the symbolic level

• Information processing

- Numeric routines for signal processing
- Sub-symbolic computation with Artificial Neural Nets
- Logical reasoning with expert systems
- Co-planning with intelligent agent systems.

from Kothamasu (2006)

3. Fault Diagnosis & Prognosis

DiagnosisIs there a fault (detect)

Fault diagnosis methods

- What is the fault (identify)
- Where is it (isolate)
- Methods
 - Data-driven
 - Statistics
 - ANN
 - Signal analysis & pattern recognition
 - Model-based
 - First principle physics
 - Qualitative physics
 - Knowledge of probable cause-effect.

from Katipamula (2005)

Prognosis: accuracy & precision

[•] Prognosis

- Prediction of the future state of health given current state and proposed actions
- or prediction of when failure will occur
- Predictions
 - Probability distribution of expected time to failure or remaining useful life (RUL)
- Accurate
 - Actual time falls within pdf. Don't want to be too late or too early in the prediction

• Precise

• Pdf is narrowly defined, otherwise prediction is not actionable.

from Dragomir (2009)

System concepts

from INCOSE SE Handbook

- Systems are hierarchical
- Purposeful design: functionality
- Systems interact: emergence
 - Reliability, availability, safety, maintainability
- A 'system' is a conceptual device to describe reality
 - Structural composition
 - Behavior.

System description language: SysML

from Friedenthal (2008)

• Description of asset as a system

- For fault diagnosis & prognosis
- Structure + behavior
- Requirements + parametrics
- Machine + human readable
 - Computer-aided maintenance
- Replace paper documents
 - One consistent database, many data views.

4. Al use cases

Al techniques (1)

Technique	Task	Strength/ Weakness
Artificial Neural	Fault diagnosis	Simple generic structure – simple to apply
Networks	Prognosis	Data-driven – no model needed
	Cause-and-effect analysis	 ANNs can approximate any calculable function to an arbitrary degree of precision <i>Needs a lot of examples for training</i> <i>Can be over-trained on the data and become poor at generalization</i>
	TTF prediction	
	Supervised data	
	classification	
	Clustering	
	Function approximation	
Deep Learning	Image/ signal / pattern	(Massively) data-driven – no model needed
	recognition	Does not need application of special image/ signal analysis
		techniques to extract training features
		Needs significantly more computational power and storage to train the network.

AI techniques (2)

Technique	Task	Strength/ Weakness
Knowledge-based / rule-based expert systems (KBES)	Fault diagnosis Prognosis Planning Cause-and-effect analysis	Encodes human expert domain knowledge in a machine executable yet human readable form Can solve problems in a logical but non-procedural way <i>Knowledge transfer from experts can be a bottleneck</i> <i>Rules must be 'tuned' to optimize inference</i> <i>Fails to reach conclusions when presented with</i> <i>concepts beyond its rule base</i>
Fuzzy logic systems (FLS)	Fault diagnosis Prognosis Planning Cause-and-effect analysis	Has many of the same strengths as KBS Handles uncertainty and ambiguity in knowledge application in human-like way More robust than KBES with crisp rules <i>Rules and definition of fuzzy sets must be tuned</i> .

AI techniques (3)

Technique	Task	Strength/ Weakness
Case-based reasoning (CBR)	Fault diagnosis Planning	Uses past experience in the form of structured 'cases' to solve similar problems Can adapt old cases to new problems
		Outcome is sensitive to method of case retrieval
Genetic Algorithms (GA)	Optimal connection weights of	Very versatile for search & optimization problems
	ANN	Does not need the objective function to have derivatives
	Model calibration	Can be trapped in a local optimum.
	Maintenance program & schedule optimization	
Reinforcement Learning (RL)	Optimal maintenance policy	Learns from feedback 'on-the-job' – does not need large number of training cases or historical data
		Does not need a model of the environment – only reward signals
		Guaranteed to converge to optimal policy if sufficient time is given
		Can be computationally expensive if state-action space is large.

Artificial Neural Network: structure

Figure 2-8. A four-layered feed-forward ANN

from Ostadi (2013)

- ANN architecture
 - Input layer of neurons
 - At least one or more hidden layer of neurons
 - Output layer of neurons
 - Connection weights between neurons in adjacent layers
- Fault features are used as inputs
 - Sensor data is pre-processed by signal processing or statistical algorithm
- Output is a fault type, location or likelihood of failure
- ANN feeds-forward during operation
- Training of ANN
 - backpropagation of residual errors
 - adjustment of connection weights.

Deep Learning Network structure

- Blocks of neurons arranged in layers
- Each block computes higher level features from the preceding block
- Neurons in each layer connected only to a small focal region in preceding block.

- Feeds-forward like ANN in operation
- Training is by backpropagation of errors or reinforcement learning
- Requires massive data & computing power
- Works directly on signal data
 - No manual feature extraction is needed.

Rule-based Expert System

from Petti (1990

IF:	mass balance is high
AND:	feed2 valve curve is high; calculated value agrees with
	valve curve.
NOT:	feed1 flow sensor is high; level sensor is stuck; prod
	flow sensor is low; expecting "strange behavior."
THEN:	feed2 flow sensor is high.

• Diagnosis expertise

- Encoded as if-then rules
- Both causal & control knowledge is encoded

• Rule firing

- Bottom-up: from data to conclusions
- Top-down: from hypothesis to supporting evidence
- 'Shallow' knowledge.

Knowledge-based Expert System

a. Compiled knowledge-based system; process- and task-specific knowledge base with general inference engine
b. Diagnostic model processor; process-specific deep knowledge base with task-specific diagnostic methodlogy

- Retains diagnostic if-then rules
- Adds 'deep' knowledge
 - Process equations
 - Rich description of objects in the application domain.

Fuzzy Logic System

from Hissel (2004)

- Data is encoded as fuzzy value using linguistic variables
- If-then rules use linguistic variables for reasoning
- Fuzzy inference engine propagates fuzzy values using fuzzy version of logic operators
- Result is defuzzified for presentation
- Fuzziness overcomes 'brittleness' of crisp if-then rules.

Case-based Reasoning

- Structured case
 - encode past experience in solving particular problems
 - Case fields: symptoms, exclusions, diagnosis, remedy, efficacy, side-effects and level of success obtained
- Query case
 - Matched against cases in case-base
 - Case retrieval finds k-closest matches using similarity measure defined over case fields
 - Remedy of retrieved case is adapted to fit particulars of query case
 - Adapted case is recorded into case base once feedback is received.

from Motawa (2003)

Problem Solving using Genetic Algorithms

• Iteratively evolves

- a population of solutions, each of which is a solution to the problem
- selection pressure forces the population to converge to the optimum

• Key GA operations

- Selection for mating & reproduction
- Mating is implemented as crossover, creating novel solutions from current gene pool of parents
- Mutation perturbs genes randomly

• Very versatile

- Does not need explicit mathematical function
- Particularly suited for search & optimization problems.

GA chromosome string structure

Year (t)

State (s)

String

- Chromosome string
 - Encodes values at each gene ٠ position that are the solution to the problem
- Fitness evaluation
 - After decoding, gene values are substituted into the objective function to determine fitness of chromosome string
 - Fitness determines chance of • mating
- Crossover operation
 - Exchanges portions of chromosome string between cut positions to create new individuals
- Mutation operation
 - Randomly perturbs gene values with some probability.

from Morcous(2005)

Conclusion (1)

- Increasing technical & system complexity creates greater demand on asset maintenance
- Task focus shifts: from functional to information and systemic aspects
 - Align technical + business goals among different agents
 - Balance asset value preservation vs. maintenance costs
- Failure diagnosis, prognosis and maintenance decisions exhibit many information-centric aspects
- Asset maintenance requires an appropriate strategy.

Conclusion (2)

- AI is an attempt to simulate human competencies in information & cognitive tasks
- AI capabilities include
 - classification, clustering, pattern recognition
 - cause-effect reasoning, fuzzy reasoning
 - case recall, planning & decision making
 - search & optimization
 - learning
- AI technology
 - becoming increasingly accessible for adoption
 - can be leveraged in AM tasks depending on capability.

